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Abstract. A wheeled soccer robot, designed for autonomous play, faces challenges in 
motion planning due to dynamic player interactions. This involves generating optimal 
paths for goal-oriented movements, utilizing techniques like Rapidly-exploring Random 
Trees (RRTs) for path planning and Stanley control for path tracking. Results at 80 cm/s 
show a Root Mean Square Error (RMSE) of 14.02 cm (x-axis) and 12.9 cm (y-axis). In the 
third test, RMSE is 6.04 cm (x-axis) and 14.16 cm (y-axis), with a 7.12-second travel time. 
The motion planning system, employing RRTs and Stanley Control, produces collision-
free trajectories, tracked effectively in real-time. Obstacle positioning impacts travel time 
but doesn't impede trajectory selection. The system adeptly generates and tracks optimal 
paths for wheeled soccer robots. 
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1 Introduction 

RoboCup is an international robot competition dedicated to developing AI and intelligent 
robotics research [1]. Robocup middle-size league is a competitive sport where teams of robots 
play soccer against each other. Robots are usually autonomous, meaning they can make their 
own decisions and execute their own actions without human intervention and have a vision that 
is 2050 against humans [2]. Most MSL teams adopt omniwheels-based drive configurations for 
the sake of agility [3-6]. One of the key challenges in robot soccer is motion planning, which 
refers to the process of determining the optimal path or trajectory that a robot should follow to 
achieve a specific goal as well as path tracking to control the movement of the robot along the 
predetermined path[7]. This can be a complicated task, especially in the dynamic and 
unpredictable environment of a soccer game, where the positions and movements of other robots 
and the ball are constantly changing[8]. 
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To address this challenge, researchers and teams participating in RoboCup have developed 
various motion planning algorithms that allow robots to navigate the field and interact with 
teammates and opponents in real-time. These algorithms take into account various factors such 
as the current position of the robot, the position of the ball, the position of other robots, and the 
rules of the game, to determine the best action for the robot to take[9-10]. 
Path planning is the process of determining the optimal path that a robot should follow to reach 
a specific destination while avoiding obstacles and meeting other constraints. This process 
usually involves the use of algorithms that consider the robot's current location, the location of 
the goal, and any form of obstacles in the environment[11-13]. Therefore, the goals of this 
research is to create a pathplanning system for robots by implementing Rapidly-Exploring 
Random Tree (RRT) and Stanley control methods to help robots navigate the field, avoid other 
robots and obstacles, and position themselves to score goals.  
RRT (Rapidly-Exploring Random Tree) is a type of motion planning algorithm commonly used 
in robotics and other fields. It works by building a tree-like structure in the robot workspace, 
where each node in the tree represents a possible robot configuration. The algorithm starts with 
a randomly generated initial configuration and iteratively adds new configurations to the tree 
until it reaches the desired goal configuration. The tree is constructed in a way that allows the 
algorithm to efficiently explore the workspace and find a path to the goal that avoids 
obstacles[14-15]. 
Once the RRT algorithm generates a feasible path, the robot can use control algorithms such as 
Stanley control to follow it. Stanley control is a feedback-based control method that allows the 
robot to track the desired path by comparing its actual position and heading to the desired path 
and generating control inputs to correct any deviations. This can be done by calculating the error 
between the robot's current position and orientation and the desired position and orientation on 
the path, and then using the feedback control loop to generate control inputs to move the robot 
towards the desired state[16]. 
By combining RRT for path planning and Stanley control for path tracking, an all-directional 
three-wheeled robot can navigate through complex environments and follow the desired path 
well. 

2 Method 

2.1 Inverse Kinematics 

Inverse kinematics refers to the robot's kinematic equations to determine the joint parameters 
that result in the desired final position. The kinematic equations define several parts of the 
robot's motion, including the velocities Vx, Vy and V_x, V_y and Omega to be the robot's 
angular velocity equation. To get the speed of each wheel must set the position of the 
omniwheels, namely the position wheel1 = 30 °, wheel2 = 150 °, wheel3 = 270 °. 



 

 
 
 
 

 
Fig. 1 A diagram inverse kinematics 
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From the inverse kinematic equation can be known where 𝜙̇ is the speed of each wheel in rad/s, 
vx is the speed towards the x axis, vy is the speed towards the y axis with units of cm/s, 𝜃̇ is the 
angular velocity of the robot with units of rad/s, R is a parameter resulting from the result of the 
distance between the wheel and the center of the robot in centimeters, r is the radius of the 
omniwheel wheel used. 

2.2  Odometry 

Forward Kinematics:  Forward Kinematics is a matrix formula that determines the position and 
direction of motion of the robot. was built with a configuration similar to that shown in Figure 
4, which shows the symmetrical mounting positions of the three omniwheels. The symmetrically 
mounted omni wheel position means that the center of gravity is at the center of the robot, 
position a1 = 180°, a2 = 300°, a3 = 60°. 

 
Fig. 2 Forward Kinematic Diagram 

To get the desired movement, it can be calculated using the Jacobian matrix equation by 
calculating the previous motion: 
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Where 𝑥̇ is the velocity in the X axis in cm/s, 𝑥̇ is the velocity in the Y axis in cm/s, 𝜓̇ is the 
angular velocity of the robot rad/s, R is the radius of the omni wheel in cm, L is the distance 
from the center of the robot to the center of the wheel in cm. 𝜓̇ is the rotation speed of the wheel 
in rad/s. 

2.3  Path Planning with Rapidly-Exploring Random Tree (RRT) 

 

 
Fig. 3 Rapidly-exploring Random Tree 

The RRT algorithm involves RandomSample, NearestNeighbor, Steer, and InsertNode 
processes. RandomSample selects samples in the field (Xrand). NearestNeighbor finds the 
closest node (Xnearest) in the search tree to Xrand. A new node (Xnew) is created between 
Xnearest and Xrand, positioned ∆X away from Xnearest. If no obstacles are in the path, Xnew 
is added to the tree, and the iteration repeats n times. 
RRT Pseudo Code 
Qgoal //region that identifies success 
Counter = 0 //keeps track of iterations 
lim = n //number of iterations algorithm should run for 
G(V,E) //Graph containing edges and vertices, initialized as empty 
While counter < lim: 
    Xnew  = RandomPosition() 
    if IsInObstacle(Xnew) == True: 
        continue 
    Xnearest = Nearest(G(V,E),Xnew) //find nearest vertex 
    Link = Chain(Xnew,Xnearest) 
    G.append(Link) 
    if Xnew in Qgoal: 
        Return G 
Return G 



 

 
 
 
 

2.4 Path Tracking with Stanley Control 

Stanley Control is a method of tracking the trajectory of an autonomous robot in real-time by 
adjusting the robot's current position and facing direction against a position and orientation 
reference. This Stanley controller method is used on 3-wheeled omnidirectional robots where 
the position of the axle is at the center point of the robot to correct the distance to the robot In 
general, stanley controllers use the front axle position, in addition to correcting yaw differences, 
stanley also corrects cross trajectories from the distance between the front axle and the nearest 
point on the trajectory. 
 

 
Fig. 4 Stanley method geometry 

Where 𝜃  is the robot's current facing direction and 𝜃$ is the trajectory direction at (cx, cy). 
When 𝑒%& is non-zero, the robot adjusts and intersects the trajectory tangent of (cx, cy) at unit 
kv(t). Figure 2 illustrates the geometry relationship of the control parameters. The resulting 
steering control law is given as : 
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Where, k is the gain parameter so that the desired can be achieved with this formula. As e_{fa} 
increases the wheels will try to head towards the trajectory. Cross track error can be calculated 
as the distance of the closest point (reference point) to the center point of the robot by finding 
the distance of all points along the current track segment from the front axle and taking the 
minimum set of distances. 

2.5 Hardware Design 

Figure 7 is a block diagram of the robot hardware. In this research, the robot uses 2 cameras as 
sensors, mini PC as the main device, STM32F4 has ARM Cortex-M4 architecture, and Arduino 
Mega 2560 is used as a special sub-controller for further control such as sensors, drible control 
and kicker control on the robot, proximity sensor is used to detect ball possession, buttons are 
used as input to the robot, gyroscopic sensor is used to determine the direction of the robot, and 



 

 
 
 
 

finally there is rotation sensor. used to find out how far the robot is moving. Figure 2 shows the 
block diagram of the currently used KRSBI (BARELANG 63) wheeled robot system as a whole. 

 
Fig. 5 Hardware Block Diagram 

2.6 Software Design 

To support and implement the method used in the robot for the purposes of the movement 
planning system, a software design is needed with a motion planning system diagram according 
to Figure 6 as follows: 

 
Fig. 6 Block diagram of motion planning 

The reference path is the target position x and y. The block calculates the longitudinal lateral 
error and orientation error with the input of the robot position and the desired position goal. 
Furthermore, the calculation results in the form of lateral and orientation errors into the Stanley 
controller to get the closest destination coordinates according to the path and PID control to get 
the speed of the x and y axis directions. yaw control block calculates the moment value with the 
desired yaw input with the yaw generated by the robot. 



 

 
 
 
 

3  Result 

This chapter covers system testing and results, focusing on gyro sensor testing and evaluating 
path planning and tracking for a 3-wheeled soccer robot. Various scenarios involving robot and 
obstacle positions are used to assess algorithm performance. The evaluation utilizes the Root 
Mean Squared Error (RMSE) formula, a unitless measure, to determine the system's accuracy 
by comparing predicted and observed data and calculating the average of squared errors. 

𝑅𝑀𝑆𝐸	 = 	X
∑ (𝐴* − 𝐹*)"+
*,!

𝑛 												(4) 

Where, RMSE is the root mean square error value, A is the observed value, F is the predicted 
value, t is the data sequence value in the database and n is the number of data. 

The algorithm parameter values are shown in Table. 2 and Table 3 as follows. 
 

Table 1  Parameter RRTs 

Random 
Sampling 

Area [min, 
max] (cm) 

Goal 
Sample 

Rate 
(Hz) 

Max  
Iteration 

Robot  
Radius 

(cm) 

[0,1200] 
,[0,800] 

25 10.000 50 

 
Based on table 1 random sampling area defines the boundary of the random sampling area to 
build a tree, this area adjusts the size of a soccer field. Goal sample rate is the frequency rate or 
sampling rate of about 25 times per second the algorithm tries to connect the random sample 
point to the goal point. Max iteration is the maximum iteration parameter that determines the 
number of iterations the algorithm will perform before terminating. A higher value of the 
iteration parameter allows the algorithm to explore the search space more widely depending on 
the size of the sampling area or the size of the field. 
 

Table 2 Parameter Stanley Control 
 

𝑘 𝑘!  L 
(cm) 

Rate 
(Hz) 

0.5 1.2 25 50 
 

Based on table 2 where, k is a gain control parameter determining how strongly the control 
system responds to errors between the trajectory or reference path and the actual position of the 
robot and also the heading error on the robot. k_p is the proportional control for speed. L is the 
distance between the robot center point (robot position) and the nearest coordinate point 
(reference path). Rate is the frequency speed of about 50 times per second Stanley control 
algorithm. This parameter is obtained based on try and error done on the striker robot. 

3.1 Path Tracking Testing 

This test was conducted with a scenario without obstacles. There are 5 destination points that 
the system must reach. Figure 3.1 is the initial position of the scenario. This scenario test is 



 

 
 
 
 

carried out to determine the performance of the system in performing translational movements. 
It can be observed that the red line is the path that must be traveled to the target point. The robot 
will always follow the path to the target point. 

 
Fig. 7 Robot path tracking response to trajectory 

Figure 7 depicts path tracking comparison across various robot speeds. Figure 10 demonstrates 
effective path tracking at a speed of 80 cm/s. However, as the robot speed increases, the lateral 
error generated by the controller also increases. Sharp turns result in larger lateral errors during 
tracking. 
 

Table 3 The performance of response algorithm on the system 

Speed 
robot 
cm/s 

Time 
(s) 

RMSE 
X (cm) 

RMSE 
Y (cm) 

 80 17.2 14.02 12.9 
100 14.5 14.80 13.92 
120 
150 

12.7 
10.6 

15.68 
20.21 

14.79 
18.21 

 
Table 4 shows four tests with different speeds of 80 cm/s, 100 cm/s, 120 cm/s, and 150 cm/s. 
RMSE is the root mean square error value of the Stanley controller for the vehicle speed 
variation. The speed of 150 cm/s has the largest tracking error of 20.21 cm in the x-axis and 
18.21 in the y-axis. This shows that the tracking path using a speed of 150 cm/s robot has not 
given good results. In this study, Stanley's control gives the smallest error value when the speed 
of 80 cm/s is 14.02 cm on the x axis and 12.9 cm on the y axis. 

3.2 Obstacle avoiding Testing 

Obstacle avoidance testing uses the Rapidly-exploring Random Tree algorithm to create its own 
path with the assumption that obstacles are either opponent robots or friend robots. This test is 
carried out by providing interference in the direction of robot movement. The robot will detect 
the position of the opponent robot and create its own path to avoid it. Then the robot moves 
following the path that has been formed so that the robot can pass the obstacle and go to the 
destination point without hitting the obstacle. 



 

 
 
 
 

 

 
 

  
(a) (b) 

Fig. 8 First experiment robot avoided the obstacles 

Figure 8. Shows that in the first experiment the robot avoided the obstacle (a) shows the visual 
localization in the field, (b) shows the reference path results and the robot trajectory results when 
avoiding obstacles. 
 

  
(a) (b) 

Fig. 9 Shows that in the second experiment the robot avoided the obstacle. 

Figure 9. Shows that in the second experiment the robot avoided the obstacle. 

 
 

(a) (b) 
Fig. 10 Third experiment robot avoided the obstacles 



 

 
 
 
 

  
(a) (b) 

Fig. 11 Fourth experiment robot avoided the obstacles 

Figure 11. Shows that in the fourth experiment the robot avoids obstacles. 
 

  
(a) (b) 

Fig. 12 Fifth experiment robot avoided the obstacles 

Figure 12 exhibits the fifth experiment, highlighting successful obstacle avoidance. Part (a) 
illustrates visual localization on the field, while part (b) showcases the reference path results 
and the robot's trajectory during obstacle avoidance. 
Figures 8-12 provide graphical insights into algorithm testing on the robot system, enabling a 
visual comparison between the reference path trajectory and the recorded robot trajectory 
movement. Figure 11 part (b) offers a comparison graph between the RRT-generated reference 
path and the actual robot trajectory. The red graph represents the reference path, and the blue 
graph illustrates the robot's trajectory movement. The RMS error values derived from the 
recorded data of the 5 experiments are summarized in the obstacle avoidance performance table. 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 

Table 4 The performance of Obstacle Avoiding 

Starting 
Point 
(x,y) 

Endpoint 
(x,y) 

Obstacle 
Position 

(x,y) 

Time 
(s) 

RMSE 
X 

(cm) 

RMSE 
Y 

(cm) 

(400,380) (400,900) 

 
(400,600) 
(300,600) 
(500,600) 

9.7 
 

11.38 
 

 
14.7 

 

(400,380) (400,900) 

 
(300,800) 
(400,600) 
(500,880) 

8.7 
 

7.56 
 

 
17.1 

 

(400,380) (400,900) 

 
(300,800) 
(400,600) 
(800,300) 

7.12 6.04 
 

14.16 
 

(400,380) (400,900) 

 
(425,490) 
(300,600) 
(350,850) 

9.1 8.24 16.7 

(400,380) (400,900) 

 
(300,600) 
(400,700) 
(350,850) 

 

8.5 6.34 17.92 

 
Table 5 summarizes 5 tests with varying obstacle positions to optimize the robot's path to the 
destination. RMSE compares the RRTs-generated reference trajectory with the robot's trajectory 
while following the path. The first experiment exhibited the largest tracking errors: 11.38 cm 
on the x-axis, 14.7 cm on the y-axis, and a travel time of 9.7 seconds. Despite the longer travel 
time, this indicates the robot prioritizes finding an obstacle-free or low-risk collision path. 
Conversely, the third experiment demonstrated lower RMSE: 6.04 cm on the x-axis, 14.16 cm 
on the y-axis, and a shorter travel time of 7.12 seconds. This difference is attributed to obstacle 
positions that minimally affect the selection of robot trajectories. 
 

4 Conclusion 

This paper outlines a path planning and tracking controller designed for a wheeled soccer robot. 
The path planning employs the Rapidly-Exploring Random Tree (RRT) method, focusing on 
generating a feasible trajectory by sampling the configuration space and incrementally exploring 
it until reaching the destination. RRT has demonstrated effectiveness in creating collision-free 
paths in uncertain environments. However, challenges arise in real-time adaptation and high 
computational costs due to the extensive field space. Future work aims to enhance 
computational efficiency by developing adaptive sampling techniques and algorithms 
accommodating dynamic conditions. 
The path tracking controller, utilizing Stanley control based on yaw rate and a kinematic model 
for 3-wheel omniwheels, proves effective at speeds up to 80 cm/s, demonstrating precise path 
following. However, at speeds exceeding 80 cm/s, an increase in mean square error is observed. 
This is attributed to the control parameter's optimal fit at 80 cm/s. Future research suggests 



 

 
 
 
 

integrating this control with an adaptive approach to handle speed variations for achieving the 
desired trajectory effectively. 
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